Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1964008

RESUMEN

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a pivotal enzyme in tocopherol and plastoquinone synthesis and a potential target for novel herbicides. Thirty-five pyridine derivatives were selected to establish a Topomer comparative molecular field analysis (Topomer CoMFA) model to obtain correlation information between HPPD inhibitory activity and the molecular structure. A credible and predictive Topomer CoMFA model was established by "split in two R-groups" cutting methods and fragment combinations (q2 = 0.703, r2 = 0.957, ONC = 6). The established model was used to screen out more active compounds and was optimized through the auto in silico ligand directing evolution (AILDE) platform to obtain potential HPPD inhibitors. Twenty-two new compounds with theoretically good HPPD inhibition were obtained by combining the high-activity contribution substituents in the existing molecules with the R-group search via Topomer search. Molecular docking results revealed that most of the 22 fresh compounds could form stable π-π interactions. The absorption, distribution, metabolism, excretion and toxicity (ADMET) prediction and drug-like properties made 9 compounds potential HPPD inhibitors. Molecular dynamics simulation indicated that Compounds Y12 and Y14 showed good root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values and stability. According to the AILDE online verification, 5 new compounds with potential HPPD inhibition were discovered as HPPD inhibitor candidates. This study provides beneficial insights for subsequent HPPD inhibitor design.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Herbicidas , Computadores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Herbicidas/química , Herbicidas/farmacología , Hidrolasas/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular
2.
Molecules ; 27(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1785838

RESUMEN

Obesity is the most common nutritional disorder in the developed world and is associated with important comorbidities. Pancreatic lipase (PL) inhibitors play a key role in the metabolism of human fat. A series of novel epoxyketones peptide derivatives were investigated for their pancreatic lipase inhibitory activity. The epoxyketone moiety is a well-known reactive electrophile group that has been used as part of proteasome inhibitors in cancer therapy, and it is widely believed that these are very selective for targeting the proteasome active site. Here we investigated various peptide derivatives with an epoxide warhead for their anti-lipase activity. The assessment of these novel epoxyketones was performed by an in-house method that we developed for rapid screening and identification of lipase inhibitors using GC-FID. Herein, we present a novel anti-lipase pharmacophore based on epoxyketone peptide derivatives that showed potent anti-lipase activity. Many of these derivatives had comparable or more potent activity than the clinically used lipase inhibitors such as orlistat. In addition, the lipase appears to be inhibited by a wide range of epoxyketone analogues regardless of the configuration of the epoxide in the epoxyketone moiety. The presented data in this study shows the first example of the use of epoxyketone peptides as novel lipase inhibitors.


Asunto(s)
Péptidos , Inhibidores de Proteasoma , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Compuestos Epoxi/farmacología , Humanos , Lipasa , Péptidos/química , Péptidos/farmacología , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/química
3.
Nat Commun ; 13(1): 621, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1671551

RESUMEN

The guanosine analog AT-527 represents a promising candidate against Severe Acute Respiratory Syndrome coronavirus type 2 (SARS-CoV-2). AT-527 recently entered phase III clinical trials for the treatment of COVID-19. Once in cells, AT-527 is converted into its triphosphate form, AT-9010, that presumably targets the viral RNA-dependent RNA polymerase (RdRp, nsp12), for incorporation into viral RNA. Here we report a 2.98 Å cryo-EM structure of the SARS-CoV-2 nsp12-nsp7-nsp82-RNA complex, showing AT-9010 bound at three sites of nsp12. In the RdRp active-site, one AT-9010 is incorporated at the 3' end of the RNA product strand. Its modified ribose group (2'-fluoro, 2'-methyl) prevents correct alignment of the incoming NTP, in this case a second AT-9010, causing immediate termination of RNA synthesis. The third AT-9010 is bound to the N-terminal domain of nsp12 - known as the NiRAN. In contrast to native NTPs, AT-9010 is in a flipped orientation in the active-site, with its guanine base unexpectedly occupying a previously unnoticed cavity. AT-9010 outcompetes all native nucleotides for NiRAN binding, inhibiting its nucleotidyltransferase activity. The dual mechanism of action of AT-527 at both RdRp and NiRAN active sites represents a promising research avenue against COVID-19.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Guanosina Monofosfato/análogos & derivados , Fosforamidas/química , Fosforamidas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , SARS-CoV-2/enzimología , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo , COVID-19/virología , Microscopía por Crioelectrón , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Guanosina Monofosfato/química , Guanosina Monofosfato/farmacología , Humanos , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Proteínas Virales/genética
4.
Science ; 372(6547): 1169-1175, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1583231

RESUMEN

Emergent resistance to all clinical antibiotics calls for the next generation of therapeutics. Here we report an effective antimicrobial strategy targeting the bacterial hydrogen sulfide (H2S)-mediated defense system. We identified cystathionine γ-lyase (CSE) as the primary generator of H2S in two major human pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, and discovered small molecules that inhibit bacterial CSE. These inhibitors potentiate bactericidal antibiotics against both pathogens in vitro and in mouse models of infection. CSE inhibitors also suppress bacterial tolerance, disrupting biofilm formation and substantially reducing the number of persister bacteria that survive antibiotic treatment. Our results establish bacterial H2S as a multifunctional defense factor and CSE as a drug target for versatile antibiotic enhancers.


Asunto(s)
Antibacterianos/farmacología , Cistationina gamma-Liasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Sulfuro de Hidrógeno/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/metabolismo , Biopelículas , Cristalografía por Rayos X , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Descubrimiento de Drogas , Farmacorresistencia Bacteriana , Sinergismo Farmacológico , Tolerancia a Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo
5.
Pharmacol Res ; 172: 105820, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1531713

RESUMEN

Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which enter the host cells through the interaction between its receptor binding domain (RBD) of spike glycoprotein with angiotensin-converting enzyme 2 (ACE2) receptor on the plasma membrane of host cell. Neutralizing antibodies and peptide binders of RBD can block viral infection, however, the concern of accessibility and affordability of viral infection inhibitors has been raised. Here, we report the identification of natural compounds as potential SARS-CoV-2 entry inhibitors using the molecular docking-based virtual screening coupled with bilayer interferometry (BLI). From a library of 1871 natural compounds, epigallocatechin gallate (EGCG), 20(R)-ginsenoside Rg3 (RRg3), 20(S)-ginsenoside Rg3 (SRg3), isobavachalcone (Ibvc), isochlorogenic A (IscA) and bakuchiol (Bkc) effectively inhibited pseudovirus entry at concentrations up to 100 µM. Among these compounds, four compounds, EGCG, Ibvc, salvianolic acid A (SalA), and isoliensinine (Isl), were effective in inhibiting SARS-CoV-2-induced cytopathic effect and plaque formation in Vero E6 cells. The EGCG was further validated with no observable animal toxicity and certain antiviral effect against SARS-CoV-2 pseudovirus mutants (D614G, N501Y, N439K & Y453F). Interestingly, EGCG, Bkc and Ibvc bind to ACE2 receptor in BLI assay, suggesting a dual binding to RBD and ACE2. Current findings shed some insight into identifications and validations of SARS-CoV-2 entry inhibitors from natural compounds.


Asunto(s)
Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Antivirales/química , Productos Biológicos/química , Tratamiento Farmacológico de COVID-19 , Inhibidores Enzimáticos/química , SARS-CoV-2/enzimología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Antivirales/farmacología , Unión Competitiva , Productos Biológicos/farmacología , Catequina/análogos & derivados , Catequina/farmacología , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Chalconas/farmacología , Ácido Clorogénico/análogos & derivados , Ácido Clorogénico/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Ginsenósidos/farmacología , Humanos , Interferometría , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular , Fenoles/farmacología , Unión Proteica
6.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1470891

RESUMEN

SARS-CoV-2, or severe acute respiratory syndrome coronavirus 2, represents a new pathogen from the family of Coronaviridae that caused a global pandemic of COVID-19 disease. In the absence of effective antiviral drugs, research of novel therapeutic targets such as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) becomes essential. This viral protein is without a human counterpart and thus represents a unique prospective drug target. However, in vitro biological evaluation testing on RdRp remains difficult and is not widely available. Therefore, we prepared a database of commercial small-molecule compounds and performed an in silico high-throughput virtual screening on the active site of the SARS-CoV-2 RdRp using ensemble docking. We identified a novel thioether-amide or guanidine-linker class of potential RdRp inhibitors and calculated favorable binding free energies of representative hits by molecular dynamics simulations coupled with Linear Interaction Energy calculations. This innovative procedure maximized the respective phase-space sampling and yielded non-covalent inhibitors representing small optimizable molecules that are synthetically readily accessible, commercially available as well as suitable for further biological evaluation and mode of action studies.


Asunto(s)
Antivirales/química , Inhibidores Enzimáticos/química , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , SARS-CoV-2/enzimología , Proteínas Virales/antagonistas & inhibidores , Amidas/química , Antivirales/metabolismo , Antivirales/uso terapéutico , Sitios de Unión , COVID-19/virología , Dominio Catalítico , Bases de Datos de Compuestos Químicos , Diseño de Fármacos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Guanidina/química , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/aislamiento & purificación , Relación Estructura-Actividad , Sulfuros/química , Termodinámica , Proteínas Virales/metabolismo , Tratamiento Farmacológico de COVID-19
7.
Bioorg Med Chem ; 46: 116366, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1437407

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, which started in late 2019, drove the scientific community to conduct innovative research to contain the spread of the pandemic and to care for those already affected. Since then, the search for new drugs that are effective against the virus has been strengthened. Featuring a relatively low cost of production under well-defined methods of cultivation, fungi have been providing a diversity of antiviral metabolites with unprecedented chemical structures. In this review, we present viral RNA infections highlighting SARS-CoV-2 morphogenesis and the infectious cycle, the targets of known antiviral drugs, and current developments in this area such as drug repurposing. We also explored the metabolic adaptability of fungi during fermentation to produce metabolites active against RNA viruses, along with their chemical structures, and mechanisms of action. Finally, the state of the art of research on SARS-CoV-2 inhibitors of fungal origin is reported, highlighting the metabolites selected by docking studies.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Tratamiento Farmacológico de COVID-19 , Hongos/química , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/química , Productos Biológicos/química , COVID-19/epidemiología , Línea Celular , Reposicionamiento de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Pandemias , SARS-CoV-2/fisiología
8.
Drug Res (Stuttg) ; 71(8): 462-472, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1404894

RESUMEN

BACKGROUND: Replication of SARS-CoV-2 depends on viral RNA-dependent RNA-polymerase (RdRp). Remdesivir, the broad-spectrum RdRp inhibitor acts as nucleoside-analogues (NAs). Remdesivir has initially been repurposed as a promising drug against SARS-CoV-2 infection with some health hazards like liver damage, allergic reaction, low blood-pressure, and breathing-shortness, throat-swelling. In comparison, theaflavin-3'-O-gallate (TFMG), the abundant black tea component has gained importance in controlling viral infection. TFMG is a non-toxic, non-invasive, antioxidant, anticancer and antiviral molecule. RESULTS: Here, we analyzed the inhibitory effect of theaflavin-3'-O-gallate on SARS CoV-2 RdRp in comparison with remdesivir by molecular-docking study. TFMG has been shown more potent in terms of lower Atomic-Contact-Energy (ACE) and higher occupancy of surface area; -393.97 Kcal/mol and 771.90 respectively, favoured with lower desolvation-energy; -9.2: Kcal/mol. TFMG forms more rigid electrostatic and H-bond than remdesivir. TFMG showed strong affinity to RNA primer and template and RNA passage-site of RdRp. CONCLUSIONS: TFMG can block the catalytic residue, NTP entry site, cation binding site, nsp7-nsp12 junction with binding energy of -6. 72 Kcal/mol with Ki value of 11.79, and interface domain with binding energy of -7.72 and -6.16 Kcal/mol with Ki value of 2.21 and 30.71 µM. And most importantly, TFMG shows antioxidant/anti-inflammatory/antiviral effect on human studies.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Biflavonoides/farmacología , Tratamiento Farmacológico de COVID-19 , Catequina/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Ácido Gálico/análogos & derivados , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/química , Adenosina Monofosfato/farmacología , Alanina/química , Alanina/farmacología , Antivirales/química , Biflavonoides/química , COVID-19/virología , Dominio Catalítico , Catequina/química , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Inhibidores Enzimáticos/química , Ácido Gálico/química , Ácido Gálico/farmacología , Conformación Proteica , SARS-CoV-2/enzimología , Relación Estructura-Actividad
9.
Phys Chem Chem Phys ; 23(36): 20117-20128, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1404891

RESUMEN

The ongoing pandemic caused by SARS-CoV-2 emphasizes the need for effective therapeutics. Inhibition of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) by nucleotide analogs provides a promising antiviral strategy. One common group of RdRp inhibitors, 2'-modified nucleotides, are reported to exhibit different behaviors in the SARS-CoV-2 RdRp transcription assay. Three of these analogs, 2'-O-methyl UTP, Sofosbuvir, and 2'-methyl CTP, act as effective inhibitors in previous biochemical experiments, while Gemcitabine and ara-UTP show no inhibitory activity. To understand the impact of the 2'-modification on their inhibitory effects, we conducted extensive molecular dynamics simulations and relative binding free energy calculations using the free energy perturbation method on SARS-CoV-2 replication-transcription complex (RTC) with these five nucleotide analogs. Our results reveal that the five nucleotide analogs display comparable binding affinities to SARS-CoV-2 RdRp and they can all be added to the nascent RNA chain. Moreover, we examine how the incorporation of these nucleotide triphosphate (NTP) analogs will impact the addition of the next nucleotide. Our results indicate that 2'-O-methyl UTP can weaken the binding of the subsequent NTP and consequently lead to partial chain termination. Additionally, Sofosbuvir and 2'-methyl CTP can cause immediate termination due to the strong steric hindrance introduced by their bulky 2'-methyl groups. In contrast, nucleotide analogs with smaller substitutions, such as the fluorine atoms and the ara-hydroxyl group in Gemcitabine and ara-UTP, have a marginal impact on the polymerization process. Our findings are consistent with experimental observations, and more importantly, shed light on the detailed molecular mechanism of SARS-CoV-2 RdRp inhibition by 2'-substituted nucleotide analogs, and may facilitate the rational design of antiviral agents to inhibit SARS-CoV-2 RdRp.


Asunto(s)
Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Nucleótidos/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/química , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Inhibidores Enzimáticos/química , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleótidos/química , SARS-CoV-2/enzimología
10.
ChemMedChem ; 16(23): 3548-3552, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1400781

RESUMEN

Over half a century since the description of the first antiviral drug, "old" re-emerging viruses and "new" emerging viruses still represent a serious threat to global health. Their high mutation rate and rapid selection of resistance toward common antiviral drugs, together with the increasing number of co-infections, make the war against viruses quite challenging. Herein we report a host-targeted approach, based on the inhibition of the lipid kinase PI4KIIIß, as a promising strategy for inhibiting the replication of multiple viruses hijacking this protein. We show that bithiazole inhibitors of PI4KIIIß block the replication of human rhinoviruses (hRV), Zika virus (ZIKV) and SARS-CoV-2 at low micromolar and sub-micromolar concentrations. However, while the anti-hRV/ZIKV activity can be directly linked to PI4KIIIß inhibition, the role of PI4KIIIß in SARS-CoV-2 entry/replication is debated.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , Antivirales/farmacología , Inhibidores Enzimáticos/química , Rhinovirus/fisiología , SARS-CoV-2/fisiología , Tiazoles/química , Replicación Viral/efectos de los fármacos , Virus Zika/fisiología , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Antivirales/química , Antivirales/metabolismo , COVID-19/patología , COVID-19/virología , Línea Celular , Estabilidad de Medicamentos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , SARS-CoV-2/aislamiento & purificación , Tiazoles/metabolismo , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/patología
11.
Nat Commun ; 12(1): 4848, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1354102

RESUMEN

There is currently a lack of effective drugs to treat people infected with SARS-CoV-2, the cause of the global COVID-19 pandemic. The SARS-CoV-2 Non-structural protein 13 (NSP13) has been identified as a target for anti-virals due to its high sequence conservation and essential role in viral replication. Structural analysis reveals two "druggable" pockets on NSP13 that are among the most conserved sites in the entire SARS-CoV-2 proteome. Here we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and a non-hydrolysable ATP analog. Comparisons of these structures reveal details of conformational changes that provide insights into the helicase mechanism and possible modes of inhibition. To identify starting points for drug development we have performed a crystallographic fragment screen against NSP13. The screen reveals 65 fragment hits across 52 datasets opening the way to structure guided development of novel antiviral agents.


Asunto(s)
Metiltransferasas/química , ARN Helicasas/química , SARS-CoV-2/química , Proteínas no Estructurales Virales/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Modelos Moleculares , Fosfatos/química , Fosfatos/metabolismo , Conformación Proteica , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , ARN Viral/química , ARN Viral/metabolismo , SARS-CoV-2/enzimología , Relación Estructura-Actividad , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo
12.
Chem Commun (Camb) ; 57(67): 8352-8355, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1337131

RESUMEN

By repurposing DNICs designed for other medicinal purposes, the possibility of protease inhibition was investigated in silico using AutoDock 4.2.6 (AD4) and in vitro via a FRET protease assay. AD4 was validated as a predictive computational tool for coordinatively unsaturated DNIC binding using the only known crystal structure of a protein-bound DNIC, PDB- (calculation RMSD = 1.77). From the in silico data the dimeric DNICs TGTA-RRE, [(µ-S-TGTA)Fe(NO)2]2 (TGTA = 1-thio-ß-d-glucose tetraacetate) and TG-RRE, [(µ-S-TG)Fe(NO)2]2 (TG = 1-thio-ß-d-glucose) were identified as promising leads for inhibition via coordinative inhibition at Cys-145 of the SARS-CoV-2 Main Protease (SC2Mpro). In vitro studies indicate inhibition of protease activity upon DNIC treatment, with an IC50 of 38 ± 2 µM for TGTA-RRE and 33 ± 2 µM for TG-RRE. This study presents a simple computational method for predicting DNIC-protein interactions; the in vitro study is consistent with in silico leads.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Hierro/farmacología , Óxidos de Nitrógeno/farmacología , Péptido Hidrolasas/metabolismo , SARS-CoV-2/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Humanos , Hierro/química , Modelos Moleculares , Estructura Molecular , Óxidos de Nitrógeno/química , SARS-CoV-2/enzimología
13.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1299427

RESUMEN

The covalent transfer of the AMP portion of ATP onto a target protein-termed adenylylation or AMPylation-by the human Fic protein HYPE/FICD has recently garnered attention as a key regulatory mechanism in endoplasmic reticulum homeostasis, neurodegeneration, and neurogenesis. As a central player in such critical cellular events, high-throughput screening (HTS) efforts targeting HYPE-mediated AMPylation warrant investigation. Herein, we present a dual HTS assay for the simultaneous identification of small-molecule activators and inhibitors of HYPE AMPylation. Employing the fluorescence polarization of an ATP analog fluorophore-Fl-ATP-we developed and optimized an efficient, robust assay that monitors HYPE autoAMPylation and is amenable to automated, high-throughput processing of diverse chemical libraries. Challenging our pilot screen with compounds from the LOPAC, Spectrum, MEGx, and NATx libraries yielded 0.3% and 1% hit rates for HYPE activators and inhibitors, respectively. Further, these hits were assessed for dose-dependency and validated via orthogonal biochemical AMPylation assays. We thus present a high-quality HTS assay suitable for tracking HYPE's enzymatic activity, and the resultant first small-molecule manipulators of HYPE-promoted autoAMPylation.


Asunto(s)
Inhibidores Enzimáticos/química , Proteínas de la Membrana , Simulación del Acoplamiento Molecular , Nucleotidiltransferasas , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Evaluación Preclínica de Medicamentos , Chaperón BiP del Retículo Endoplásmico , Polarización de Fluorescencia , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/química
14.
J Pharmacol Sci ; 147(1): 62-71, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-1240460

RESUMEN

Owing to the urgent need for therapeutic interventions against the SARS-coronavirus 2 (SARS-CoV-2) pandemic, we employed an in silico approach to evaluate the SARS-CoV-2 inhibitory potential of newly synthesized imidazoles. The inhibitory potentials of the compounds against SARS-CoV-2 drug targets - main protease (Mpro), spike protein (Spro) and RNA-dependent RNA polymerase (RdRp) were investigated through molecular docking analysis. The binding free energy of the protein-ligand complexes were estimated, pharmacophore models were generated and the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of the compounds were determined. The compounds displayed various levels of binding affinities for the SARS-CoV-2 drug targets. Bisimidazole C2 scored highest against all the targets, with its aromatic rings including the two imidazole groups contributing to the binding. Among the phenyl-substituted 1H-imidazoles, C9 scored highest against all targets. C11 scored highest against Spro and C12 against Mpro and RdRp among the thiophene-imidazoles. The compounds interacted with HIS 41 - CYS 145 and GLU 288 - ASP 289 - GLU 290 of Mpro, ASN 501 of Spro receptor binding motif and some active site amino acids of RdRp. These novel imidazole compounds could be further developed as drug candidates against SARS-CoV-2 following lead optimization and experimental studies.


Asunto(s)
Biología Computacional/métodos , Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Simulación del Acoplamiento Molecular/métodos , SARS-CoV-2/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Imidazoles/química , Imidazoles/metabolismo , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , SARS-CoV-2/química , SARS-CoV-2/metabolismo
15.
PLoS One ; 16(5): e0251801, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1226905

RESUMEN

Drug repurposing studies targeting inhibition of RNA dependent RNA polymerase (RdRP) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have exhibited the potential effect of small molecules. In the present work a detailed interaction study between the phytochemicals from Indian medicinal plants and the RdRP of SARS-CoV-2 has been performed. The top four phytochemicals obtained through molecular docking were, swertiapuniside, cordifolide A, sitoindoside IX, and amarogentin belonging to Swertia chirayita, Tinospora cordifolia and Withania somnifera. These ligands bound to the RdRP were further studied using molecular dynamics simulations. The principal component analysis of these systems showed significant conformational changes in the finger and thumb subdomain of the RdRP. Hydrogen bonding, salt-bridge and water mediated interactions supported by MM-GBSA free energy of binding revealed strong binding of cordifolide A and sitoindoside IX to RdRP. The ligand-interacting residues belonged to either of the seven conserved motifs of the RdRP. These residues were polar and charged amino acids, namely, ARG 553, ARG 555, ASP 618, ASP 760, ASP 761, GLU 811, and SER 814. The glycosidic moieties of the phytochemicals were observed to form favourable interactions with these residues. Hence, these phytochemicals may hold the potential to act as RdRP inhibitors owing to their stability in binding to the druggable site.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Inhibidores Enzimáticos/farmacología , Fitoquímicos/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , SARS-CoV-2/enzimología , Antivirales/química , Antivirales/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fitoquímicos/química , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/efectos de los fármacos
16.
J Enzyme Inhib Med Chem ; 36(1): 1016-1028, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1226495

RESUMEN

Elastase is a proteolytic enzyme belonging to the family of hydrolases produced by human neutrophils, monocytes, macrophages, and endothelial cells. Human neutrophil elastase is known to play multiple roles in the human body, but an increase in its activity may cause a variety of diseases. Elastase inhibitors may prevent the development of psoriasis, chronic kidney disease, respiratory disorders (including COVID-19), immune disorders, and even cancers. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in herbal plants, have been revealed to influence elastase release and its action on human cells. This review focuses on elastase inhibitors that have been discovered from natural sources and are biochemically characterised as flavonoids. The inhibitory activity on elastase is a characteristic of flavonoid aglycones and their glycoside and methylated, acetylated and hydroxylated derivatives. The presented analysis of structure-activity relationship (SAR) enables the determination of the chemical groups responsible for evoking an inhibitory effect on elastase. Further study especially of the in vivo efficacy and safety of the described natural compounds is of interest in order to gain better understanding of their health-promoting potential.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Elastasa de Leucocito/antagonistas & inhibidores , Neutrófilos/enzimología , COVID-19/metabolismo , Inhibidores Enzimáticos/química , Flavonoides/química , Humanos , Elastasa de Leucocito/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neutrófilos/efectos de los fármacos , Relación Estructura-Actividad , Tratamiento Farmacológico de COVID-19
17.
SLAS Discov ; 26(6): 757-765, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1194439

RESUMEN

Frequent outbreaks of novel coronaviruses (CoVs), highlighted by the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, necessitate the development of therapeutics that could be easily and effectively administered worldwide. The conserved mRNA-capping process enables CoVs to evade their host immune system and is a target for antiviral development. Nonstructural protein (nsp) 16 in complex with nsp10 catalyzes the final step of coronaviral mRNA capping through its 2'-O-methylation activity. Like other methyltransferases, the SARS-CoV-2 nsp10-nsp16 complex is druggable. However, the availability of an optimized assay for high-throughput screening (HTS) is an unmet need. Here, we report the development of a radioactivity-based assay for the methyltransferase activity of the nsp10-nsp16 complex in a 384-well format, kinetic characterization, and optimization of the assay for HTS (Z' factor = 0.83). Considering the high conservation of nsp16 across known CoV species, the potential inhibitors targeting the SARS-CoV-2 nsp10-nsp16 complex may also be effective against other emerging pathogenic CoVs.


Asunto(s)
Adenosina/análogos & derivados , Ensayos Analíticos de Alto Rendimiento , Caperuzas de ARN/antagonistas & inhibidores , ARN Viral/antagonistas & inhibidores , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Adenosina/química , Adenosina/farmacología , COVID-19/virología , Clonación Molecular , Pruebas de Enzimas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Metilación , Metiltransferasas , Modelos Moleculares , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Tritio , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo
18.
J Med Chem ; 64(9): 5632-5644, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1193564

RESUMEN

To develop antiviral therapeutics against human coronavirus (HCoV) infections, suitable coronavirus drug targets and corresponding lead molecules must be urgently identified. Here, we describe the discovery of a class of HCoV inhibitors acting on nsp15, a hexameric protein component of the viral replication-transcription complexes, endowed with immune evasion-associated endoribonuclease activity. Structure-activity relationship exploration of these 1,2,3-triazolo-fused betulonic acid derivatives yielded lead molecule 5h as a strong inhibitor (antiviral EC50: 0.6 µM) of HCoV-229E replication. An nsp15 endoribonuclease active site mutant virus was markedly less sensitive to 5h, and selected resistance to the compound mapped to mutations in the N-terminal part of HCoV-229E nsp15, at an interface between two nsp15 monomers. The biological findings were substantiated by the nsp15 binding mode for 5h, predicted by docking. Hence, besides delivering a distinct class of inhibitors, our study revealed a druggable pocket in the nsp15 hexamer with relevance for anti-coronavirus drug development.


Asunto(s)
Antivirales/farmacología , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano 229E/enzimología , Endorribonucleasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Ácido Oleanólico/análogos & derivados , Proteínas no Estructurales Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Antivirales/síntesis química , Antivirales/química , Línea Celular , Relación Dosis-Respuesta a Droga , Endorribonucleasas/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Ácido Oleanólico/síntesis química , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Proteínas no Estructurales Virales/metabolismo
19.
SLAS Discov ; 26(6): 766-774, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1192708

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the global COVID-19 pandemic. Nonstructural protein 14 (NSP14), which features exonuclease (ExoN) and guanine N7 methyltransferase activity, is a critical player in SARS-CoV-2 replication and fidelity and represents an attractive antiviral target. Initiating drug discovery efforts for nucleases such as NSP14 remains a challenge due to a lack of suitable high-throughput assay methodologies. This report describes the combination of self-assembled monolayers and matrix-assisted laser desorption ionization mass spectrometry to enable the first label-free and high-throughput assay for NSP14 ExoN activity. The assay was used to measure NSP14 activity and gain insight into substrate specificity and the reaction mechanism. Next, the assay was optimized for kinetically balanced conditions and miniaturized, while achieving a robust assay (Z factor > 0.8) and a significant assay window (signal-to-background ratio > 200). Screening 10,240 small molecules from a diverse library revealed candidate inhibitors, which were counterscreened for NSP14 selectivity and RNA intercalation. The assay methodology described here will enable, for the first time, a label-free and high-throughput assay for NSP14 ExoN activity to accelerate drug discovery efforts and, due to the assay flexibility, can be more broadly applicable for measuring other enzyme activities from other viruses or implicated in various pathologies.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Exonucleasas/antagonistas & inhibidores , Exorribonucleasas/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , ARN Viral/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/química , COVID-19/virología , Clonación Molecular , Pruebas de Enzimas , Inhibidores Enzimáticos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Exonucleasas/genética , Exonucleasas/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Especificidad por Sustrato , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
20.
SLAS Discov ; 26(6): 749-756, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1136206

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents a significant threat to human health. Despite its similarity to related coronaviruses, there are currently no specific treatments for COVID-19 infection, and therefore there is an urgent need to develop therapies for this and future coronavirus outbreaks. Formation of the cap at the 5' end of viral RNA has been shown to help coronaviruses evade host defenses. Nonstructural protein 14 (nsp14) is responsible for N7-methylation of the cap guanosine in coronaviruses. This enzyme is highly conserved among coronaviruses and is a bifunctional protein with both N7-methyltransferase and 3'-5' exonuclease activities that distinguish nsp14 from its human equivalent. Mutational analysis of SARS-CoV nsp14 highlighted its role in viral replication and translation efficiency of the viral genome. In this paper, we describe the characterization and development of a high-throughput assay for nsp14 utilizing RapidFire technology. The assay has been used to screen a library of 1771 Food and Drug Administration (FDA)-approved drugs. From this, we have validated nitazoxanide as a selective inhibitor of the methyltransferase activity of nsp14. Although modestly active, this compound could serve as a starting point for further optimization.


Asunto(s)
Antivirales/farmacología , Exorribonucleasas/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Nitrocompuestos/farmacología , Caperuzas de ARN/antagonistas & inhibidores , ARN Viral/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Tiazoles/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antiparasitarios/química , Antiparasitarios/farmacología , Antivirales/química , COVID-19/virología , Clonación Molecular , Reposicionamiento de Medicamentos , Pruebas de Enzimas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Espectrometría de Masas/métodos , Metilación , Nitrocompuestos/química , Medicamentos bajo Prescripción/química , Medicamentos bajo Prescripción/farmacología , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Tiazoles/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA